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1. Solve for 0 180� �θ o

tan cotθ θ+( ) = −( )35 53o o

(Total 4 marks)

2. Given that

1 1
2

2

0

2
+ ⎡⎣ ⎤⎦( ) = +∫ tan lnx x a b

π

d

find the value of a and the value of b.
(Total 7 marks)

3. A sequence { un } is given by

where k, p and q are positive constants with pq ≠ 1

(a) Write down the first 6 terms of this sequence.
(3)

(b) Show that u
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In part (c) x[ ] means the integer part of x, so for example 2 73 2. ,[ ] = 4 4[ ] = and 0 0[ ] =
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(Total 13 marks)
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4. The curve C has parametric equations

x t= cos2

y t t= cos sin

where 0  t < �

(a) Show that C is a circle and find its centre and its radius.
(5)

Figure 1

Figure 1 shows a sketch of C. The point P, with coordinates cos , cos sin ,2( ) 0 2< < ,
lies on C. The rectangle R has one side on the x-axis, one side on the y-axis and OP as a diagonal,
where O is the origin.

(b) Show that the area of R is sin cos3
(1)

(c) Find the maximum area of R, as α varies.
(7)

(Total 13 marks)
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5.

Figure 2

Figure 2 shows a sketch of the curve C with equation y x
x

= −
−

2

2
2
4
and x ≠ ±2.

The curve cuts the y-axis at U.

(a) Write down the coordinates of the point U.
(1)

The point P with x-coordinate a ( )a ≠ 0 lies on C.

(b) Show that the normal to C at P cuts the y-axis at the point
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(6)

The circle E, with centre on the y-axis, touches all three branches of C.

(c) (i) Show that

a
a

a a a2

2

2 2 2
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2 4
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4
16( )

( ) ( )
−

− −⎡

⎣
⎢

⎤

⎦
⎥ = + −

(ii) Hence, show that

a2
2

4 1−( ) =

(iii) Find the centre and radius of E.
(10)

(Total 17 marks)
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6. The line L has equation

r = −
−
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The point P has position vector
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The point ′P is the reflection of P in L.

(a) Find the position vector of ′P .
(6)

(b) Show that the point A with position vector
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

7
9
8
lies on L.

(1)

(c) Show that angle PA ′P = 120°.
(3)

Figure 3

The point B lies on L and APBP′ forms a kite as shown in Figure 3.

The area of the kite is 50√3

(d) Find the position vector of the point B.
(5)

(e) Show that angle BPA = 90°.
(2)

The circle C passes through the points A P P B, , .and′

(f) Find the position vector of the centre of C.
(2)

(Total 19 marks)
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7.

Figure 4

(a) Figure 4 shows a sketch of the curve with equation y x= f ( ), where

f ( ) ,x x
x

x= −
−

∈
2 5
3

, x ≠ 3

The curve has a minimum at the point A, with x-coordinate α, and a maximum at the point B,
with x-coordinate β.

Find the value of α, the value of β and the y-coordinates of the points A and B.
(5)
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(b) The functions g and h are defined as follows

g : x x p x→ + ∈

h : x x x→ ∈

where p is a constant.

Figure 5

Figure 5 shows a sketch of the curve with equation y x q= +h fg( )( ) , x∈, x ≠ 0, where q is
a constant. The curve is symmetric about the y-axis and has minimum points at C and D.

(i) Find the value of p and the value of q.

(ii) Write down the coordinates of D.
(5)

(c) The function m is given by

m( ) ,x x
x

x= −
−

∈
2 5
3

, x  α

where α is the x-coordinate of A as found in part (a).

(i) Find m−1

(ii) Write down the domain of m−1

(iii) Find the value of t such that m m( ) ( )t t= −1

(10)

(Total 20 marks)

FOR STYLE, CLARITYAND PRESENTATION: 7 MARKS
TOTAL FOR PAPER: 100 MARKS
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